First Name:

Last Name: \qquad Grade: \qquad

Teacher:

Parent's email: \qquad

Fun Shapes

Welcome to Math Challenge \#12. In this challenge, we will explore 2-dimensional shapes such as circles, squares, rectangles, and hexagons. In geometry, there are regular and irregular shapes, which are also called regular and irregular polygons. A regular polygon has all its sides equal and all its angles equal in measure. Examples of regular polygons are squares, equilateral triangles, regular pentagons, etc. An irregular polygon does not have all its sides equal and not all the angles are equal in measure. Examples of irregular polygons are right triangles, scalene triangles, rectangles and rhombi (when they are not a square), parallelograms irregular hexagons, etc.

Kinder \& First Grade: solve at least 3 problems.
Second \& Third Grade: solve at least 7 problems.
Fourth Grade and above: solve at least 12 problems.

2. When you have 2 identically-shaped cookies that you share equally with a friend, each of you will get 1 cookie.
a. If you have 6 small cookies (identical in shape and size) to share equally with another friend, each of you will get \qquad cookies.

b. If you have one giant cookie to share with your mom equally, you will get \qquad of a cookie.

4. A square was originally made out of 25 small squares. Some of the small squares are missing. How many small squares are missing? There are 14 squares, so the number of missing squares is $25-14=$ 11

7. Single rectangle: 5

Double rectangles: 4
Triple rectangle: 1
Total $=5+4+1=10$

10

9.

We can label vertices A, B, C, D, E and F. Since the hexagon is regular, it can be divided into 6 equilateral triangles as shown. Therefore, Equilateral quadrilateral $O A B C$ is a rhombus, and its diagonal $A C$ is a line of symmetry. So, if vertex B is folded onto O, the fold will be along $A C$. Similarly, if D and F are folded onto O, the fold will be along CE and EA respectively. The figure that is formed will be a triangle, and since all three of the rhombuses (OABC, OCDE, and OEFA) are made out of two congruent equilateral triangles, the lengths of their diagonals $A C, C E$, and $E A$ will be equal. Therefore, the shape of ACE that is formed is an equilateral triangle.
10. The radius of each of the circles is 5 cm and hence the diameter of each is 10 cm . The length of the side of the square is equal to the sum of the diameters of two circles and is equal to 20 cm . The length of each side of the equilateral triangle is equal to the length of the side of the square. Hence the perimeter of the star, which is made up of eight sides of congruent equilateral triangles, is $8 \times 20 \mathrm{~cm}=160 \mathrm{~cm}$.

11. Split it into smaller shapes you can find the area as the sum of the areas of the smaller parts.
$2 \times 3+4 \times(4+3)+2 \times 6+1 / 2 \times 6 \times(7-2)=6+28+12+15=$ $61 \mathrm{~cm}^{2}$

61 [sq cm or cm^{2}]
160 [cm]
14.

A regular hexagon can be subdivided into 6 equilateral triangles. The long 84 [mm] diagonal consists of exactly 2 of these side lengths, and the perimeter consists of 6 of these side lengths, which is 3 times as much. The perimeter of the hexagon must be $3 \times 28=84 \mathrm{~mm}$.
15. Original square is $16 \times 16=256 \mathrm{in}^{2}$. Then fold it in half once we get the area of $128 \mathrm{in}^{2}$. Then another fold will get $64 \mathrm{in}^{2}$; then $32 \mathrm{in}^{2}$; and finally, $16 \mathrm{in}^{2}$.
16. An octagon with whole number side lengths could have perimeter 80,88 , or
$576\left[\mathrm{~cm}^{2}\right]$ 96. A hexagon with whole number side lengths could have perimeter $84,90,96$.

So, 96 must be the perimeter of both if their perimeters are equal. A square with perimeter 96 would have side lengths of $96 \div 4=24$, and an area of $24^{2}=576$.

18. The number of teeth in gear ratio from left to right is 30 : $15: 60: 10$. When the left gear rotates once, the second one will rotate twice. The large gear will rotate halfway (30 teeth), while the smallest one (last) will make 3 full turns $30 / 10=3$.

