First Name:	Last Name:	Grade:
Teacher:	Parent's ema	

Patterns

Kinder \& First Grade: solve at least 3 problems.
Second \& Third Grade: solve at least 7 problems.
Fourth Grade and above: solve at least 12 problems.
Answer

2. | 10 | 20 | 敜 | 40 | 88 |
| :---: | :---: | :---: | :---: | :---: |
| 60 | 70 | 80 | $\%$ | 100 |
3. | ${ }_{1}$ | X | ${ }^{3}$ | X | X | X | ${ }^{7}$ | X | 9 | X | ${ }^{11}$ | K | ${ }^{13}$ | X | X |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

6 [numbers]

4.			

5. Cross out those with a partner:

97 and 2,15 and 84,42 and 57,67 does not have a partner, 21 and 78,36 and 63,6 does not have a partner, 26 and 73,86 and 13,86 and 13,77 and 22,8 and 91 , and 29 does not have a partner.

97, 15, 84, 42, 67, 21, $\quad 6,29,67$
36, 57, 2, 6, 78, 26, 86,
$77,13,63,8,73,22,29$,
91.

85
$10+30+45=85$
6.
b.
c.

2		6		10	
3		9		15	18
4		10		16	
	22				

a. 4 and 8
b. 6 and 12
c. 7,13 , and 19
7.

	\# of people to tell	\# of people told
At noon	1	2
By 12:10	2	4
By 12:20	4	8
By 12:30	8	16
By 12:40	16	32
By 12:50	32	64
By 1 p.m.	64	128

By phone there were $2+4+8+16+32+64+128=\mathbf{2 5 4}$ people, who got the news.
8. Notice that the rule is 2 times the input plus 3.

If the input is 4 , the output is $4 \times 2+3=11$
If the input is 10 , the output is $10 \times 2+3=23$.
The other pattern you may notice is that the output column increases by 2 each line. To get to the $10^{\text {th }}$ row you'll do 9 steps, or $5+9 \times 2=\mathbf{2 3}$.
9. a .

b.

a. $5,6,7,8$
b. $7,8,9,10$
10. First, we need to find the number of cubes used in each figure. We can solve this problem by noticing the pattern: 1 cube; 4 cubes; 9 cubes; 16 cubes; \qquad cubes.
Each time, we add the next odd number to the number of cubes: $1+3$, $4+5,9+7,16+9=25$

Fig. 2

Fig. 1

Fig. 3

Fig. 4

25
11. a.
b.

Check on the number of steps to reach from one number to the other. Find the difference between two closest a. 6 and 14 numbers and divide by the number of the steps between them.
b. 15 and 37
a. $(10-2) / 2=4$. The pattern is adding 4 .
b. $(26-4) / 2=11$. The pattern is adding 11 .
c. 23,35 and 59
c. $(47-11) / 3=12$. The pattern is adding 12 .
d. $(101-9) / 4=23$. The pattern is adding 23 .
d. 32,55 and 78
12.

Small muffin: \$2.20
Medium muffin: \$3.20
Large muffin: \$4.20
13. We can make three lists of the numbers corresponding to the clues.

120 and 240
For the first list we'll skip count by 5 , for the second list we skip count by 6 , for the third list we skip count by 8 . We then find the numbers that are divisible at the same time by 5,6 , and 8 .

Another way is to find the least common multiple of $(5,6,8)$, which is 120 . The mailbox that corresponds to all three clues will repeat every 120 mailboxes. Thus, there are 2 mailboxes that will work: \#120 and \#240.
14. $(1+2+3+4+5+6+7+8+9+10+11+12) \times 2=78 \times 2=156 \quad 156$ [times]

Sohum will need to put 13 rows of white balls before there is a difference of 13 , so the number of white balls is $1+3+5+\ldots+21+$ $23+25=169$ white balls .
16.

a.	8	24		
b.	15		240	
	c.	13		117

Check on the number of steps to reach from one number to the other. Find the quotient between two closest numbers and think what number multiplied as many times as the number of the steps will give this result.
a. $24 / 8=3$, so the pattern is multiplying by 3 .
b. $240 / 15=16$ and is reached in 2 steps. So, the pattern is multiplying by 4 .
c. $117 / 13=9$. The pattern is multiplying by 3 .
a. 72 and 216
b. 60 and 960
c. 39 and 351
17.
a.

b.

a. 5, 7, 23, 23 or
5, 7, 23
b. 2, 19, 31, 67

Prime numbers are numbers that have only 2 factors: 1 and themselves. For example, the first 5 prime numbers are $2,3,5,7$, and 11 .
$161=7 \times 23,115=5 \times 23$
$1273=19 \times 67,62=2 \times 31,589=19 \times 31,134=2 \times 67$

18. | N_{1} | $\mathrm{~N}_{2}$ | $\mathrm{~N}_{3}$ | $\mathrm{~N}_{4}$ | $\mathrm{~N}_{5}$ | $\mathrm{~N}_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | 2 | | 3 | |
| 9 | 8 | 7 | 6 | 5 | 4 |
| | 10 | | 11 | | 12 |
| 18 | 17 | 16 | 15 | 14 | 13 |
| 19 | | 20 | | 21 | |
| 27 | 26 | 25 | 24 | 23 | 22 |
| \ldots | \ldots | \ldots | \ldots | \ldots | \ldots |
| | | | | | |

Notice that the pattern repeats itself every 4	N_{2}
rows. The first 4 rows contain 18 numbers.	
$550 \div 18=30 \mathrm{r} 10$	
The number 550 will appear in the same	
column as 10 , which is N_{2}.	
Another way:	
Every other line starts with a multiple of 9 :	
$9,18, \ldots$, the closest multiple of 9 to the 550	
is $61 \times 9=549$. And this number is in the first	
column, thus, 550 is in the next or N_{2}.	

Solution is available on October 20, 2023
www.mathinaction.org

