First Name:
Last Name:
Grade: \qquad
Teacher:
Parent's email: \qquad

Numbers and Digits

Kinder \& First Grade: solve at least 3 problems.

Second \& Third Grade: solve at least 7 problems.
Fourth Grade and above: solve at least $\mathbf{1 2}$ problems.
Answer

4.

The number $8,9,10,11,12,13,14$ are between 7 and 15 . The number 11 is exactly in the middle.

5.	3	6	$663-366=297$

| 6. $97+86$ or $86+97$ or $96+87$ or $87+96=183$ | a. 183 |
| :--- | :--- | :--- |
| b. $14+23$ or $23+14$ or $13+24$ or $24+13=37$ | b. 37 |

| 7. Her list: $557,575,577,755,757,775$. The largest number is 775 ; the smallest number is 557. | 218 |
| :--- | :--- | :--- |
| So, $775-557=218$ | |

| 8. Use deductive reasoning. Read the clues several times to deduct the answer 8783. | 8783 |
| :--- | :--- | :--- |

9. To get the greatest possible difference, we need to subtract the smallest number from the 531 greatest number. Use the three greatest digits in the minuend and arrange them from greatest to least. Arrange the other three digits from least to greatest in the subtrahend. Then you will find 531 is the greatest possible difference. $654-123=531$.

10	a. b. In the first division, we multiply 97 b to find (f) $97 \times 6=582$, so $(\mathbb{d})=5$. $58 \div 6=9 r 4 \rightarrow \bigotimes=4 \text { because } 9 \times 6=54$	In the second division, we find $\boldsymbol{1}$ by dividing 69 by $3=23$. So, $\boldsymbol{\zeta}_{2} \boldsymbol{T}=2$. $23 \times 323+11=7440 .$ Therefore, $\mathbf{4}=4$.	$$

11.		B, A, D, C or BADC

12. $\left.\begin{array}{l}\text { _-_ On the first place there could be any of the digits } 2,5,7 \text {, or } 9 \text {. On the second place } \\ \text { any of the three digits that are left. On the units' place any of the two digits that are left. Find } \\ \text { the combination } 4 \times 3 \times 2=24 \text { possible area codes. } \\ \text { Or do the organized list. } \\ 975,957,972,927,952,925 \\ 795,759,792,729,752,725 \\ 597,579,592,529,572,527 \\ 297,279,295,259,275,257\end{array}\right\}$ There are 24 possible area codes.
13. One way to solve: $N M 8-N M=386$, so we know M must be 2 . Since $N 28-N 2=386$, we find N must be 42 4. Therefore, $428-42=386$.

The other way to approach it is to do column subtraction:
NM8
$\frac{-386}{N M} \quad M$ is $2, N=12-8=4.428-386=42$

15.	$\begin{array}{r} 7 6 \longdiv { 6 3 } \\ \frac{592}{66} \\ \frac{64}{24} \end{array}$	$63 __\div \mathbf{4}=$ _6, could be 9 or 8 . If $=9$, then $6399 \div 96=66$ R 63, so it doesn't work. If $=8$, then $6388 \div 86=74$ R 24 , it works. Thus, $=8, \boldsymbol{\infty}=4$.	\% $=8 ; \mathbf{4}$

16. The product of two consecutive digits must create a two-digit number, thus on the hundreds and tens place we can't have 1 and 2 or 2 and 3 .
If we have 4 and 5 in hundreds and tens place, then the ten-thousands and thousands is $4 \times 5=20$. Then we have 20,459 to have the sum of 20 of all the digits. It is less than 30,000 .
If we have 5 and 6 on hundreds and tens place, then we'll get 30,566 , but this number is even.
If we have 6 and 7 on hundreds and tens place, then we'll get 42,671 it works with all the clues.
If we have 7 and 8 on hundreds and tens place, then we'll get 56,78 _ the sum of four digits is more than 20 , the same will happen for 72,89 _.
The only number that works with the clues is 42,671 .

| 17. One way: We can look at the ones and tens digits separately: | 73 [times] |
| :--- | :--- | The ones digit of 8 from 1 through 384: since it occurs one time in every set of 10 consecutive numbers, there are 38 complete sets of 10 consecutive numbers. So, the digit ' 8 ' appears 38 times as a ones digit.

The tens digits of 8 from 1 through 384: since it occurs 10 times in every set of 100 consecutive numbers, there are 3 complete sets of 100 (1-100, 101-199, 200-299). The digit 8 appears 30 times as a tens digit.
In addition, the numbers 380-384 contain 5 more tens digit of 8 . In all, the digit ' 8 appears a total of $38+30+5=73$ times.
Another way: If we are looking at the first one hundred numbers (1-100) the digit 8 appears 20 times: $8,18,28,38,48,58,68,78,80,81,82,83,84,85,86,87,88,89,98$.
Since we have 384 pages, it means $20 \times 3+13=73$ times digit 8 will appear in the page number 1-384.

18.		$1=$	3-2	11 =	$22-3 \times 3-2$	$1=$	3-2
	$2{ }^{3}$	2 =	2	12 =	$2 \times 2 \times 3$ or $2 \times 3 \times 2$ or $3 \times 2 \times 2$	$2=$	2
	1516	3 =	3	13 =	$22-3-3 \times 2$	$4=$	2×2
	\times	4 =	2×2	14 =	$2 \times 2 \times 2 \times 2-2$	$5=$	$33-22-3-3$ or $3 \times 3-2 \times 2$
	c 0 =		$33-22-3-3$ or $3 \times 3-2 \times 2$	$15=$	22-3-2-2	7 =	$3 \times 3-2$
		$6=$	2×3 or 3×2	$16=$	$2 \times 2 \times 2 \times 2$	$8=$	$2 \times 2 \times 2$
		7 =	$3 \times 3-2$	17 =	$22-3-2$	$\begin{aligned} & 9 \\ & 9 \\ & 10\end{aligned}=$	$3 \times 3 \times 2 \times 3-2$
			$2 \times 2 \times 2$	$18=$	$3 \times 3 \times 2$ or $3 \times 2 \times 3$		
		9 =	3×3	19 =	22-3	$11=$	$22-3 \times 3-2$
		$10=$	$2 \times 2 \times 3-2$	$20=$	22-2	$13=$	$2 \times 2 \times 3$ or $2 \times 3 \times 2$ or $3 \times 2 \times 2$
						$14=$	$2 \times 2 \times 2 \times 2-2$
						$15=$	$22-3-2-2$
						$16=$	$2 \times 2 \times 2 \times 2$
						$17=$	$22-3-2$
						$18=$	$3 \times 3 \times 2$ or $3 \times 2 \times 3$
						$19=$	22-3
						$20=$	22-2

www.mathinaction.org

