

Toys

Kinder \& First Grade: solve at least $\mathbf{3}$ problems.

Second \& Third Grade: solve at least 7 problems.
Fourth Grade and above: solve at least 12 problems.

1.	Olivia has 6 stuffed animals, and she wants to add 3 more to her collection. How many stuffed animals will Olivia have in total? $6+3=9$	9 [stuffed animals]

2. Sarah has saved $\$ 12$ to buy new toys. She finds a toy car for $\$ 6$ and a puzzle for $\$ 5$. How much money does she have left after buying both toys?
Toy car and puzzle cost \$6 + \$5 = \$11.
Money leftover after buying the toy car and the puzzle: \$12-\$11=\$1.
3. Tim is playing with cubes. He has 5 cubes already. How many more cubes does he need to build the structure shown in figure 1?

Figure 1 has $3+3+3+3+3=15$ cubes.
Since Tim has 5 cubes already, he needs $15-5=10$ more cubes.

Figure 1
4. Half of Evan's collection of stuffed animals are bears. If he has 7 bears, how many stuffed animals does he have? 7+7 = 14

> 14 [stuffed animals]
5. Since the free one is the cheapest toy, we can add up the prices of all toys except for the cheapest one: $\$ 35+\$ 37+\$ 42=\$ 114$

```
\(\$ 114\) or
```

\$114.00
6. To maximize the number of different toy cars John can buy, he should start by selecting the cheapest ones.
First, he can buy the $\$ 5$ toy car. Then, he can add the $\$ 6$ toy car, totaling $\$ 11$. Next, he can buy the $\$ 7$ toy car, making it a total of $\$ 18$, but he would have only $\$ 2$ left which is not enough to pay for any toy car. So, with $\$ 20$, John can get 3 different toy cars. Or the cost of all the cars in collection is $\$ 4+\$ 5+\$ 6+\$ 79+\$ 12=\$ 43$. John has $\$ 20$, so he doesn't have enough money to buy the whole collection, as he is $\$ 43-\$ 20=\$ 23$ short. Three cars can fit precisely $\$ 23(\$ 4+\$ 7+12=\$ 23$ or $\$ 5+\$ 6+\$ 12=\$ 23)$. So, he can afford to buy three cars ($\$ 5, \$ 6, \$ 9$, or $\$ 4, \$ 7, \$ 9$), and there will be no change left. Thus, John can buy at most 3 cars.
7. The total number of toys is $12+6=18$. If they want to have an equal number of toys, they need to split 18 toys equally: $18 \div 2=9$.
Sal should give $12-9=3$ to Sarah so that each will have 9 action figures.
8. 1 toy robot: $20+5=25$ minutes

2 hours and 30
6 toy robots: $25+25+25+25+25+25$ or $6 \times 25=150$ minutes.
minutes
150 minutes $\mathbf{=} \mathbf{2}$ hours and $\mathbf{3 0}$ minutes
8 [toy soldiers]
9. The display has 3 shelves and can hold 12 toy soldiers in each shelf: $3 \times 12=36$ toy soldiers. $36-28=8$ more toy soldiers.
10. To calculate the profit for toy cars, we subtract the cost from the selling price:
[\$]240 [profit]
Profit per car = Selling price - Cost price $=\$ 8-\$ 5=\$ 3$.
Similarly, for toy trains: Profit per train = Selling price - Cost price = \$10-\$7=\$3.
Now, we calculate the total profit:
Total profit $=($ Profit per car * Number of cars) + (Profit per train * Number of trains)
Total profit $=(\$ 3 * 50)+(\$ 3 * 30)=\$ 150+\$ 90=\$ 240$.
11. Each machine will produce $120 \div 3=40$ toy airplanes.

80 [hours]
If each machine takes 2 hours to produce 1 toy airplane, it will take 40×2 hours or 80 hours to produce 40 toy airplanes or 120 airplanes for all three machines.
12. $(60-3)+(26 \times 2)+26+(14 \times 2)+14+14+(14 \times 2)+38=57+52+26+28+28+28+38=257$ toys.
13. There are 3 thirds in one whole. So, to complete the rest of the puzzle, they need $45 \mathrm{~min} \times 2=$ 90 minutes.
14.

$$
\begin{aligned}
& \text { Alina }=1 / 5 \text { of } 750=150 \\
& \text { Boris }=1 / 4 \text { of }(750-150)=1 / 4 \text { of } 600=150 \\
& \text { Camille }=750-300=450
\end{aligned}
$$

Another way to calculate:
From the drawing, Boris completed the same number of pieces as Alina. So, Camille
completed $750-150-150=450$ pieces.
Another way to calculate:
From the model, Alina completed $1 / 5$ of the puzzle and Boris completed $1 / 5$ of the puzzle.
Thus, $3 / 5$ of the puzzle was Camille's share. $3 / 5 \times 750=450$ pieces.
15. To minimize excess inventory, the store should aim to meet the demand exactly, when possible. To do this, you can calculate how many packs of each toy they need to order:

- For action figures: $120 \div 25=4.8$ packs. We round up to 5 packs of action figures since we want to meet demand.
- For building sets: $100 \div 15=6.67$ packs. We round up to 7 packs of building sets since

450 [pieces] we want to meet demand.
16. To ensure that 90% of the toys made are defect-free: $90 \% \times$ the number of toys made $=475$.

So, $475 \div 90 \%=$ the number of toys need to be made.
$475 \div 90 / 100=475 \times 100 / 90=527.78 \rightarrow$ we round up to 528 for a reasonable answer.

- Check: $528 \times 90 \%=528 \times 90 / 100=47520 / 100=475.20 \rightarrow$ about 475 toys are defectfree.

17. In 2020 , its value was $\$ 160 \times 8=\$ 1,280$.

In 2021, its value was $\$ 1280 \times 1.10=\$ 1408$
In 2022, its value was $\$ 1408 \times 1.10=\$ 1548.80$
In 2023, its value was $\$ 1548.80 \times 1.10=\$ 1703.68$
In 2024, its value was $\$ 1703.68 \times 1.10=\$ 1874.05$
18. 3 workers assemble 1 toy in 8 hours it means 1 worker assembles $\frac{1}{3}$ toy in 8 hrs.

Or 1 worker assembles $\frac{1}{24}$ toy in 1 hr .
At first, 3 workers that worked for two hours, so, they assembled $3 \times \frac{1}{24} \times 2=\frac{1}{4}$ toy.
Then 1 worker left, and 2 of them working for 3 hours: $2 \times \frac{1}{24} \times 3=\frac{1}{4}$ toy.
Let's figure out what part of a toy is still left for assembling $1-\frac{1}{4}-\frac{1}{4}=1-\frac{1}{2}=\frac{1}{2}$.
Now 2 more workers join, so there are 4 people assembling the rest $1 / 2$ of the toy.
$4 \times \frac{1}{24} \times(? \boldsymbol{h r s}$. $)=\frac{1}{2} \Rightarrow \frac{1}{6} \times \mathbf{3}=\frac{1}{2}$, so, they needed 3 hours to complete assembling the toy.
In total it took 2 hrs. +3 hrs. +3 hrs. $=8$ hours of assembling
Solution is available on February 2, 2024
www.mathinaction.org

