First Name:
Teacher:

Last Name:

Grade: \qquad

Finding Possibilities

> Kinder \& First Grade: solve at least 3 problems.
> Second \& Third Grade: solve at least 7 problems.
> Fourth Grade and above: solve at least 12 problems.

3. Melody dresses up her teddy bear. Her teddy bear's coat has 3 buttons. She sometimes buttons them up starting with the top button, but sometimes starts somewhere else. How many possible ways can Melody button-up the coat for her teddy bear?

She can do the top first, middle, then bottom, or do the top first, bottom, then middle.
She can also do bottom first, middle, then top, or do the bottom first, top, then middle.
She can also start with middle first, top, then bottom, or middle, bottom, then top.
Vase 2: sunflower
Vase 2: rose and sunflower
Vase 2: tulip
Vase 2: sunflower and tulip
Vase 2: tulip and rose
Vase 2: rose
5. Make an organized list:

Starting with $5: 51,53$ and 54
Starting with $3: 34,31$ and 35
Starting with $5: 51,53$ and 54
Starting with $3: 34,31$ and 35
Total 2-digit numbers: 12

Starting with 1: 15, 13 and 14
Starting with 4: 45, 43 and 41
6. Make an organized list:

12 [numbers]

$1+2=3,1+3=4,2+3=1+4=5,1+5=2+4=6,3+4=2+5=7,3+5=8,4+5=9$. There are 7
different sums.

7.	If \$1 is taken: $5+10+20+50=85$	If \$5 is taken: $1+10+20+50=81$	If $\$ 10$ is taken: $1+5+20+50=76$	If $\$ 20$ is taken: $1+5+10+50=66$	If $\$ 50$ is taken: $1+5+10+20=36$	2 [possibilities]

9. To spell the word PROUD, there is one way to choose the P, two ways to choose an R , three ways to choose an O , two ways to choose a U , and one way to choose the D. That results in a total of $1 \times 2 \times 3 \times 2 \times 1=12$ possible paths. Several sample paths are shown on the right.

P	P	12 [paths]
R R	R R	
000	000	
$U_{D} U$	$\mathrm{U}_{\mathrm{D}} \mathrm{U}$	

10.

6 [different bracelets]

- there are two different bracelets when you use 2 red beads and 2 blue beads (RBRB and RRBB)
- there is only one design when you use 3 blue beads and 1 red beads

11.

12. Jackson bought 7 fruits.

Katie could have bought:
$7=1+1+5=1+5+1=5+1+1$-> 3 ways
$7=1+2+4->6$ ways
$7=1+3+3$-> 3 ways
$7=2+2+3$-> 3 ways
In total $3+6+3+3=15$ ways

Option	Apples	Oranges	Pears	Total
1	1	1	5	7
2	1	5	1	7
3	1	2	4	7
4	1	4	2	7
5	1	3	3	7
6	2	1	4	7
7	2	4	1	7
8	2	2	3	7
9	2	3	2	7
10	3	1	3	7
11	3	3	1	7
12	3	2	2	7
13	4	1	2	7
14	4	2	1	7
15	5	1	1	7

15 [combinations]
13.

CONE

18 [combinations]

C \perp T , where $\mathrm{C}=$ container, $\mathrm{I}=$ ice-cream, $\mathrm{T}=$ topping Think how many options there are for each category.
$2 \times 3 \times 3=18$. This calculation can be shown using diagram tree or making an organized list.
strawberry.......sprinkles
chocolate........sprinkles
vanilla..........sprinkles
strawberry.......peanuts
14.

We can make a table to list possibilities in an organized way. We can start with 3 because it has only two possibilities.

3	7	8	13	14
0 and 3	5 and 2	7 and 1	9 and 4	8 and 6
1 and 2	0 and 7	5 and 3	9 and 4	8 and 6
1 and 2	4 and 3	0 and 8	7 and 6	9 and 5

For envelope number 8 , there are 3 possibilities (0 and 8,5 and 3 or 7 and 1).
15. a. There are 36 possible combinations.

1-1, 1-2, 1-3, 1-4, 1-5, 1-6
2-1, 2-2, 2-3, 2-4, 2-5, 2-6
3-1, 3-2, 3-3, 3-4, 3-5, 3-6
4-1, 4-2, 4-3, 4-4, 4-5, 4-6
5-1, 5-2, 5-3, 5-4, 5-5, 5-6

a. 36
[combinations]

6-1, 6-2, 6-3, 6-4, 6-5, 6-6
b. 6
[combinations]
b. There are only 6 of the combinations that have a sum that is ten or greater:

4 and 65 and $6 \quad 1-1,1-2,1-3,1-4,1-5,1-6$
6 and $4 \quad 6$ and $5 \quad 2-1,2-2,2-3,2-4,2-5,2-6$
5 and $5 \quad 6$ and $6 \quad 3-1,3-2,3-3,3-4,3-5,3-6$
4-1, 4-2, 4-3, 4-4, 4-5, 4-6
$5-1,5-2,5-3,5-4,5-5,5-6$
$6-1,6-2,6-3,6-4,6-5,6-6$

16. One way to solve it:	6 [rocks]

Think of the different ways 15 stones can be distributed into 4 piles from least to greatest piles:
$(1,2,3,9),(1,2,4,8),(1,2,5,7),(1,3,4,7),(1,3,5,6),(2,3,4,6)$.
Therefore, the number of rocks in the largest pile of each distribution may be $6,7,8$, or 9 . The
smallest of these is 6 .
17. The number of distinct ways to arrange 5 things can be obtained by multiplying the number of options.
Each position can have:
 $\times \frac{3}{\frac{3}{t}} \times \frac{2}{\text { There are }} \times \frac{1}{2}=120$
There are 3 options
There are 4 options (only 4 letter
There are 4 options (only 4 letters left after choosing 1 for the start) There are 5 options (P I Z Z A)
However, the letter Z is repeated twice, they look the same, so we will never see the difference when we switch them around. Therefore, there are $120 \div 2=60$ distinct ways.
18. In the minutes part: digit 5 appears 16 times in an hour ($05,15,25,35,45,50,51,52,53,54,55$, 56, 57, 58, 59).
There are 24 hours in a day which means $16 \times 24=384$ times digit 5 appears in minutes part.
In the hour part: digit 5 appears when it's 5 o'clock and 15 o'clock (05 and 15), but then this numbers stay that way for the whole hour, no matter if the minutes change. In one-hour time, the digit 5 appears 60 times when the hour is 05 and 60 times when the hour is 15 . Thus, $2 \times 60=120$ times.
Altogether digit 5 appears $384+120=504$ times during 24-hour period on 24-hour clock.

