	;halle	
Stift .		* 90 *90

First Name:	Last Name:	Grade:
Teacher:	Parent's email:	

Finding Possibilities

Kinder & First Grade: solve <u>at least</u> 3 problems. Second & Third Grade: solve <u>at least</u> 7 problems. Fourth Grade and above: solve <u>at least</u> 12 problems.

		Answer
1.	Matthew has a blue crayon and a red crayon. He starts coloring a coloring page that has 2 apples. If Matthew colors each apple with either blue or red, how many different ways can the coloring page look like? From left to right, Matthew can color the following ways: Red, Blue Red, Red Blue, Red Blue, blue	4 [ways]
2.	Anisha was given 3 colored blocks to play. She loves to build a tower by stacking these blocks and then knocking them down. In how many ways can Anisha build a tower using a red, purple, and blue block? There are 6 different ways: 2 ways with red at the bottom: red – purple – blue, red – blue – purple. 2 ways with purple at the bottom: purple – blue – red, purple – red – blue. 2 ways with blue at the bottom: blue – purple – red, blue – red – purple.	6 [ways]
3.	Melody dresses up her teddy bear. Her teddy bear's coat has 3 buttons. She sometimes buttons them up starting with the top button, but sometimes starts somewhere else. How many possible ways can Melody button-up the coat for her teddy bear? She can do the top first, middle, then bottom, or do the top first, bottom, then middle. She can also do bottom first, middle, then top, or do the bottom first, top, then middle. She can also start with middle first, top, then bottom, or middle, bottom, then top.	6 [possible ways]
4.	Vase 1: tulip and roseVase 2: sunflowerVase 1: tulipVase 2: rose and sunflowerVase 1: rose and sunflowerVase 2: tulipVase 1: roseVase 2: sunflower and tulipVase 1: sunflowerVase 2: tulip and roseVase 1: sunflower and tulipVase 2: rose	6 [ways]
5.	Make an organized list:Starting with 5: 51, 53 and 54Starting with 3: 34, 31 and 35Starting with 3: 34, 31 and 35Total 2-digit numbers: 12	12 [numbers]
6.	Make an organized list: 1+2 = 3 , 1+3 = 4 , 2+3 = 1+4 = 5 , 1+5 = 2+4 = 6 , 3+4 = 2+5 = 7 , 3+5 = 8 , 4 + 5 = 9 . There are 7 different sums.	7 [sums]
7.	If \$1 is taken:If \$5 is taken:If \$10 is taken:If \$20 is taken:If \$50 is taken:5+10+20+50=851+10+20+50=811+5+20+50=761+5+10+50=661+5+10+20=36	2 [possibilities]

²⁰²³⁻²⁰²⁴ Math Challenge

14.	0 14 We can make a tab two possibilities.	ale to list pos 3 0 and 3 1 and 2 1 and 2	sibilities in a 7 5 and 2 0 and 7 4 and 3	8 7 and 1 5 and 3 0 and 8	13 9 and 4 9 and 4 7 and 6	14 8 and 6 8 and 6 9 and 5	9 3 3 because it l	has only	3 [possibilities]: 0 and 8, 5 and 3 or 7 and 1
15.	15. a. There are 36 possible combinations. $1-1, 1-2, 1-3, 1-4, 1-5, 1-6$ $2-1, 2-2, 2-3, 2-4, 2-5, 2-6$ $3-1, 3-2, 3-3, 3-4, 3-5, 3-6$ $4-1, 4-2, 4-3, 4-4, 4-5, 4-6$ $5-1, 5-2, 5-3, 5-4, 5-5, 5-6$ $6-1, 6-2, 6-3, 6-4, 6-5, 6-6$.b. There are only 6 of the combinations that have a sum that is ten or greater: $4 \text{ and } 6 5 \text{ and } 6 1-1, 1-2, 1-3, 1-4, 1-5, 1-6$ $6 \text{ and } 4 6 \text{ and } 5 2-1, 2-2, 2-3, 2-4, 2-5, 2-6$ $5 \text{ and } 5 6 \text{ and } 6 3-1, 3-2, 3-3, 3-4, 3-5, 3-6$ $4-1, 4-2, 4-3, 4-4, 4-5, 4-6$ $5-1, 5-2, 5-3, 5-4, 5-5, 5-6$ $6-1, 6-2, 6-3, 6-4, 6-5, 6-6$							a. 36 [combinations] b. 6 [combinations]	
16.	 One way to solve it: Think of the different ways 15 stones can be distributed into 4 piles from least to greatest piles: (1, 2, 3, 9), (1, 2, 4, 8), (1, 2, 5, 7), (1, 3, 4, 7), (1, 3, 5, 6), (2, 3, 4, 6). Therefore, the number of rocks in the largest pile of each distribution may be 6, 7, 8, or 9. The smallest of these is 6. 					6 [rocks]			
17.	The number of distinct ways to arrange 5 things can be obtained by multiplying the number of options. Each position can have: 5 × 4 × 3 × 2 × 1 = 120 There are 2 options There are 3 options There are 4 options (only 4 letters left after choosing 1 for the start) There are 5 options (P I Z Z A) However, the letter Z is repeated twice, they look the same, so we will never see the difference when we switch them around. Therefore, there are 120 ÷ 2 = 60 distinct ways.					60 [ways]			
18.	 In the minutes part: digit 5 appears 16 times in an hour (05, 15, 25, 35, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59). There are 24 hours in a day which means 16×24 = 384 times digit 5 appears in minutes part. In the hour part: digit 5 appears when it's 5 o'clock and 15 o'clock (05 and 15), but then this numbers stay that way for the whole hour, no matter if the minutes change. In one-hour time, the digit 5 appears 60 times when the hour is 05 and 60 times when the hour is 15. Thus, 2×60 = 120 times. Altogether digit 5 appears 384 + 120 = 504 times during 24-hour period on 24-hour clock. 							ne, the	504 [times]

Solution is available on February 16, 2024 <u>www.mathinaction.org</u>